Scaled Entropy for Dynamical Systems

نویسندگان

  • YUN ZHAO
  • YAKOV PESIN
چکیده

In order to characterize the complexity of a system with zero entropy we introduce the notions of scaled topological and metric entropies. We allow asymptotic rates of the general form e determined by an arbitrary monotonically increasing “scaling” sequence a(n). This covers the standard case of exponential scale corresponding to a(n) = n as well as the cases of zero and infinite entropy. We describe some basic properties of the scaled entropy including the inverse variational principle for the scaled metric entropy. Furthermore, we present some examples from symbolic and smooth dynamics that illustrate that systems with zero entropy may still exhibit various levels of complexity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy operator for continuous dynamical systems of finite topological entropy

In this paper we introduce the concept of entropy operator for continuous systems of finite topological entropy. It is shown that it generates the Kolmogorov entropy as a special case. If $phi$ is invertible then the entropy operator is bounded with the topological entropy of $phi$ as its norm.

متن کامل

ENTROPY OF DYNAMICAL SYSTEMS ON WEIGHTS OF A GRAPH

Let $G$ be a finite simple graph whose vertices and edges are weighted by two functions. In this paper we shall define and calculate entropy of a dynamical system on weights of the graph $G$, by using the weights of vertices and edges of $G$. We examine the conditions under which entropy of the dynamical system is zero, possitive or $+infty$. At the end it is shown that, for $rin [0,+infty]$, t...

متن کامل

The concept of logic entropy on D-posets

In this paper, a new invariant called {it logic entropy} for dynamical systems on a D-poset is introduced. Also, the {it conditional logical entropy} is defined and then some of its properties are studied.  The invariance of the {it logic entropy} of a system  under isomorphism is proved. At the end,  the notion of an $ m $-generator of a dynamical system is introduced and a version of the Kolm...

متن کامل

SOME ERGODIC PROPERTIES OF HYPER MV {ALGEBRA DYNAMICAL SYSTEMS

This paper provides a review on major ergodic features of semi-independent hyper MV {algebra dynamical systems. Theorems are presentedto make contribution to calculate the entropy. Particularly, it is proved that thetotal entropy of those semi-independent hyper MV {algebra dynamical systemsthat have a generator can be calculated with respect to their generator ratherthan considering all the par...

متن کامل

Entropy of infinite systems and transformations

The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014